
APPENDIX D

PHOTOGRAPH DOCUMENTATION

Photo: 1

Description:

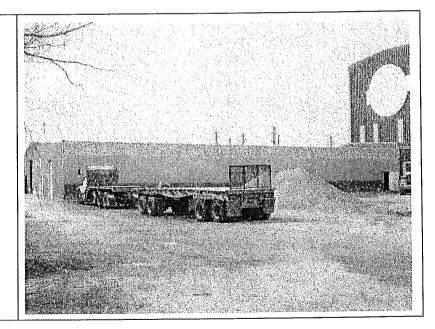

Handy Truck Line Meridian Terminal – the southeastern portion of the facility is the location of the stockpiles of sand and gravel, as well as the wet hoppers.

Photo: 2

Description:

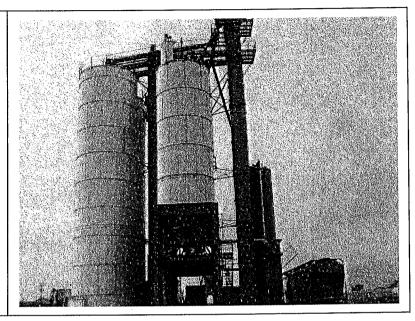

Handy Truck Line Meridian Terminal – facing west toward the new building addition, as well as existing buildings #1 and #2.

Photo: 3

Description:

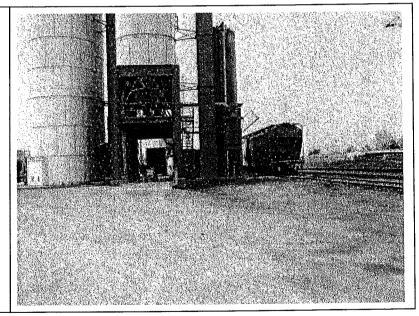

Storage silos in the Track Loadout System are on the north portion and the railroad lease property of the facility.

Photo: 4

Description:

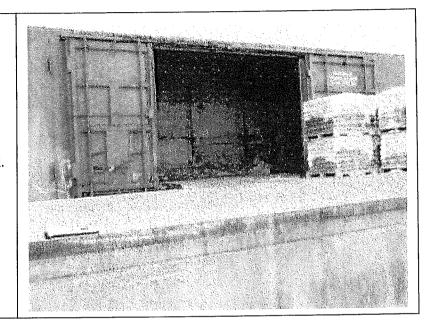

Track Loadout System – a rail car is unloading a shipment of fly ash into the covered screw conveyor that transfers the material into the fly ash storage silo.

Photo: 5

Description:

Track Loadout System – this loading platform, adjacent to the railroad tracks, is shown with pallets of bagged material.

Photo: 6

Description:

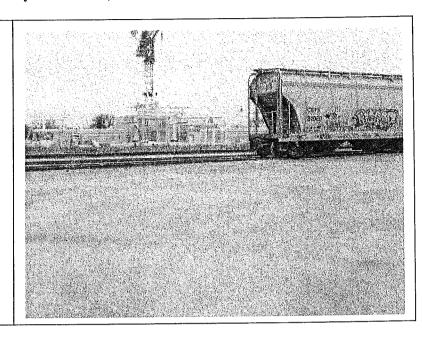

The loading platform is described above, and this view is facing northeast.

Photo: 7

Description:

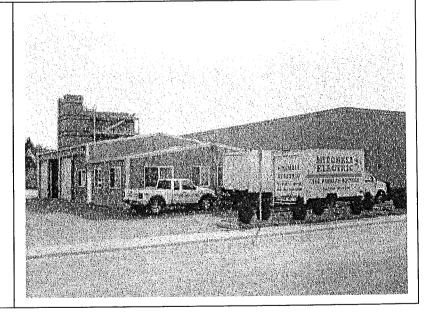

Timbercraft is the neighboring facility located due north of the Handy Truck Line Meridian Terminal.

Photo: 8

Description:

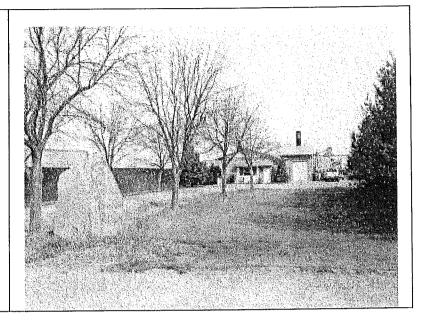

Mitchell Electric is the neighboring facility located due south of the Handy Truck Line Meridian Terminal

Photo: 9

Description:

Memorial Pet Care, 'A Caring Way to Say Goodbye to a Faithful Friend,' is the neighboring facility located due east of the Handy Truck Line Meridian Terminal.

Photo: 10

Description:

Stockpiles of sand are located in the southeastern portion of the Handy Truck Line facility.

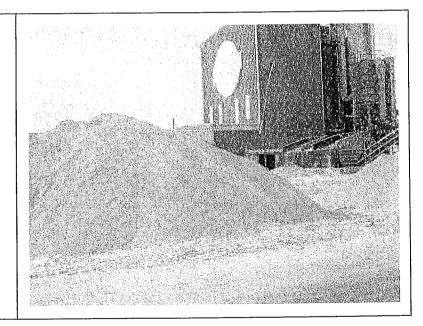


Photo: 11

Description:

A front end loader is used to transfer materials from the stockpiles into the wet hoppers.

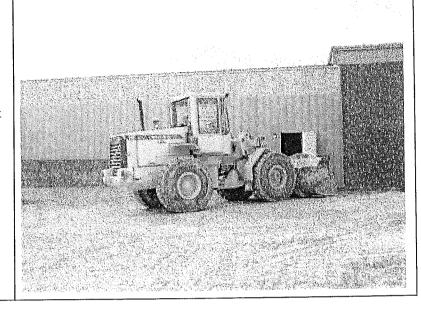


Photo: 12

Description:

Existing Building #2 in the south portion of the facility.

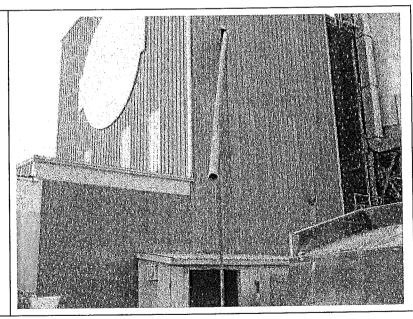


Photo: 13

Description:

Wet sand and gravel hoppers in the south portion of the facility.

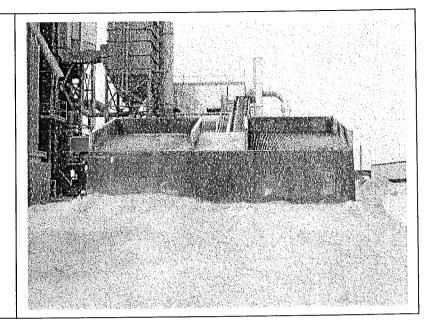
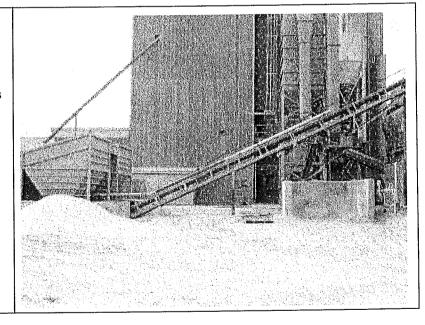



Photo: 14

Description:

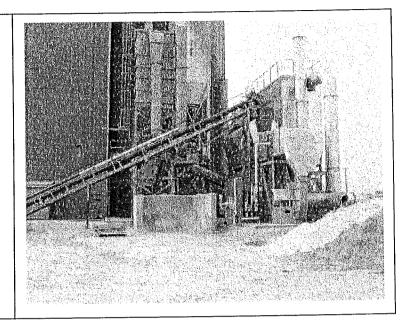

Feed conveyor that moves material from the hoppers up to the dryer.

Photo: 15

Description:

The feed conveyor moves material continuously into the Ventilex dryer and evaporative cooler.

Photo: 16

Description:

Conveyors move materials to the dryer and from the cooler into the main building where it is sorted, mixed, bagged and palletized.

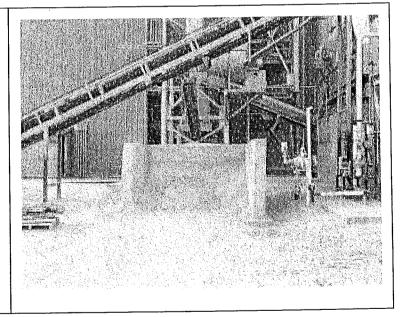
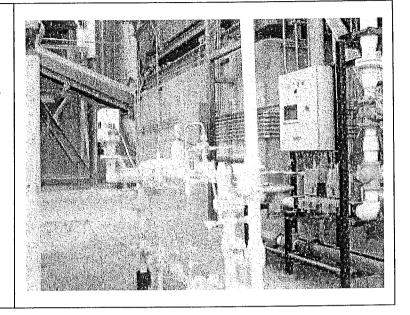



Photo: 17

Description:

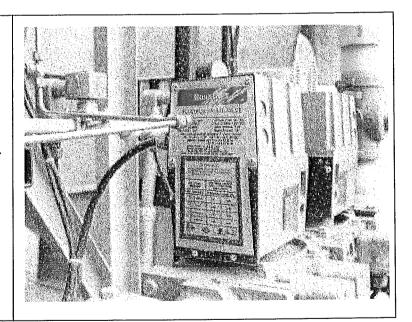

The dryer is heated with a natural gas-fired burner.

Photo: 18

Description:

The fluid power gas valve on the natural gas line is adjacent to the Ventilex fluid bed dryer and cooler.

ATTACHMENT 1

MANUFACTURER'S INFORMATION ON EQUIPMENT

MANUFACTURER'S GUARANTEE

DUST CONTENT IN EXHAUST GASES FROM VENTILEX FILTER INSTALLATION

Manufacturer

: Ventilex B.V.

Address

: Europaweg 8, 8181 BH, Heerde, The Netherlands Postbus 158, 8180 AD, Heerde, The Netherlands

Telephone

: +31 (0)578 698200

Fax

: +31 (0)578 698282

Project Ref. Num.

: V7155

Client Name

: Handy Wholesale

Address

: 630 East King St., Meridian, ID 83642, United States of America

This document is a guarantee of the exhaust gases from the supplied filter installation:

Manufactured by

: Ventilex B.V.

Founded

: 1978

The dust content within the exhaust gases shall not exceed 10 mg/Nm³ given that the following conditions are met:

The complete system, as supplied by Ventilex B.V., is utilized according to the process conditions set out in the as build book (V7155 SBU)

All filter bags are supplied by Ventilex B.V. and replaced at regular intervals, each interval period not to exceed 2 years.

The specifications of the product supplied by client to the installation is in accordance with the technical specification in the as build book (V7155 SBU)

Heerde, 8th of March, 2008

H. Dijkman

Europawells, P.O. Box 168

8180 AD Hearder Holland

Telefoon 0578 - 69 82 00 Telefax 0578 - 69 82 82

Director, Ventilex B.V.

Xs:

LLC

MASON, OH 45040 PH 513-282-0810 ~ FA 513-282-0811

INDUSTRIAL PROCESS BURNER SYSTEMS ~ CONTROLS ~ SERVICE

WWW.STARCOMBUSTION.COM

Ventilex USA Inc 8106 Beckett Center Drive West Chester, OH 45069

December 10, 2007

SUBJECT: Predicted emissions levels from Maxon NP-II burner

Maxon Corporation has predicted that their NP-II burner will produce approximately 80ppm NOx, corrected to 3% O2 (.105#/mmbtu), and approximately 250ppm CO, corrected to 3% O2 (.200#/mmbtu) when firing into a Ventilex dryer with 100 deg F incoming fresh and and 950 deg F outgoing process air.

This letter is not an issuance of an emissions guarantee by either Maxon or Star Combustion Systems LLC. The numbers provided are a prediction, based on historical performance in similar applications. If an emissions guarantee is desired, please contact Star Combustion Systems LLC for more information.

Andrew J Kemppainen

Combustion Engineer Star Combustion Systems LLC

115

MASON, DH 45040 PH 513-282-0810 ~ FA 513-282-0811

_ _ _ _

WWW.STARCOMBUSTION.COM

Ventilex USA Inc 8106 Beckett Center Drive West Chester, OH 45069

December 10, 2007

SUBJECT: Predicted emissions levels from Maxon low emissions burners

Maxon Corporation has predicted that their Optima and Crossfire burners will produce the approximate emissions levels according to the table below:

•		Expected	Numbers		Numbers that can be Guaranteed						
	NO _x (ppm, corrected to 3% O ₂)	NO _x (#/mmbtu)	CO (ppm, corrected to 3% O ₂)	CO (#/mmbtu)	NO _x (ppm, corrected to 3% O ₂)	NO _x (#/mmbtu)	CO (ppm, corrected to 3% O ₂)	CO (#/mmbtu)			
Optima with Smartfire Control	8	0.011	69	0.055	14	0.018	228	0.183			
Optima with Smartlink Control	14	0.018	137	0.11	23	0.011	228	0.183			
Crossfire with Micro Ratio Control	25	0.033	250	0.2	30	0.04	300	0.24			

Maxon burner emissions estimates based on firing into a Ventilex dryer with 14"wc back pressure, heating all fresh air from 150 deg F to 950 deg F.

This letter is not an issuance of an emissions guarantee by either Maxon or Star Combustion Systems LLC. The numbers provided are a prediction, based on historical performance in similar applications. If an emissions guarantee is desired, please contact Ventilex USA Inc or myself for more information.

Andrew J Kemppainen

Combustion Engineer Star Combustion Systems LLC

Date: 04/02/08

To: Sandra Carroll

Phone: 775-843-3833 Fax: 775-322-3987

Pages: 6

Subject: Baghouse information

Sandra,

Here is the documentation that I have. I hope that it will help you. FYI the original bags that were supplied were Aramid for high temperature the number bags that will be supplied will be Polyester. The specifications are listed below.

Fabric: 16 ounce Polyester singed 1 side.

CFM: 20 - 30/square yard

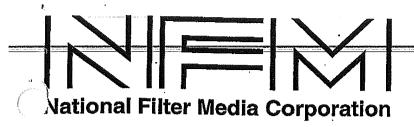
Sandra, I have included an ASTM standard test on the fabric that will be supplied, I am sure it should help you.

Best regards,

Mark Rydalch Sales Manager

> National Filter Media 691 North 400 West Salt Lake City, UT. 84103 800-777-4248

VERIFICATION TESTING OF BAGHOUSE FILTRATION PRODUCTS SUMMARY OF RESULTS AT 6.6/1 A/C


ETS CONTRACT NUMBER: 02-934

DATE 10/28/02

RUN ID. FABRIC DESIGNAT DUST FEED	ION		934-1-1 PE-16-US Pural NF
VERIFICATION TES	T RESULTS	ASTM	D6830-02
Mean Outlet Particle PM 2.5 (gr/dscf)	Conc.		0.0001146
Mean Outlet Particle Total mass (gr/dscf			0.0001153
Initial Residual Press Drop (in.w .g.)	•		1.48
Change in Residual Drop (in.w .g.)	Pressure		0.42
Average Residual Propropropropropropropropropropropropropr	ressure		1.74
Mass Gain of Filter Sample (g)			1.43
Average Filtration Cy Time (s)	ycle		48
Number of Pulses			448
RESIDUAL PRESSU	JRE DROP		
Conditioning Period	(in. w.g.)		0.05
Recovery Period (in.	w.g.)		1.39
Performance Test P	eriod (in. w.g.)		1.48
REMOVAL EFFICIE	NCY (%)		
Dust Conc (gr/dscf)			8.17
PM 2.5	**		99.99819
Total Mass	R.R.		99.99859

^{*(&}lt;u>Dust Concentration * 0.7735</u>) - <u>PM 2.5 Outlet Concentration</u> * 100 Dust Concentration * 0.7735

^{**}D ust Concentration - Total Mass Outlet Concentration * 100
Dust Concentration

April 6, 1995

National Filter Media Corporation 691 North 400 West Salt Lake City, Utah 84103

Attention: Mr. John Eugster

Reference: Handy Trucking

Aggregate Dryer Baghouse

John:

Please find attached our quotation for above referenced project.

- -Baghouse is 12 ga. carbon steel construction.
- -Access ladder and handrail included.
- -Support steel for 5'
- -0" clearance included.
- -Bags, Cages, Fan, Motor, Ductwork and Installation by Others.

-Prices stated are your net.

Trust the attached is satisfactory. If you have any questions, please call.

Best regards.

Harry Gatley

, Inc. takes pleasure in submitting our firm quotation for the design, engineering, fabrication and supply of one (1) dust collector to handle 15,000 ACFM from an Aggregate Dryer (rotary kiln).

DUST COLLECTOR DESIGN REQUIREMENTS:

Volume 15,000 ACFM

Temperature 350 degrees F
Quantity One (1)

Application Ventilation of Aggregate

Dryer (rotary kiln)

Inlet Loading Not known
Dust Aggregate
Dust Particle Size Not Known

Exposure Outdoors

EQUIPMENT SELECTION:


CARBO-Tech Model 12-12-12-2714-RTH
Cleaning Method Reverse air pulse

Cloth Area 2714 square feet A/C Ratio 5.53:1

Quantity of bags and cages 144
Quantity of pulse valves 12

Compressed Air Required 15 SCFM @ 90 psig (3 min. cycle)
Dimensions 8'-4" x 26'-0" (approx.)

Weight 16,500 lbs. (approx.)

SCOPE OF SUPPLY:

- -12 gauge carbon steel housing stiffened for +/- 20" WC
- -12 gauge carbon steel hopper with 60 degree side slope
- -10 gauge carbon steel tubesheet
- -hopper air inlet w/baffle
- -lift-up roof access doors
- -24" x 24" bolted hopper access door
- -magnehelic gauge
- -1 1/2" dia. double diaphragm pulse valves
- -solenoid enclosure
- -support steel to allow 5'-0" clearance under hopper flange
- -one (1) exterior coat of corrosion resistant primer
- -caged access ladder

Note: Filter bags and cages by others. Dust collector is sized for 6" dia. x 12'-0 long bags and cages.

SPECIFICALLY NOT INCLUDED:

- -mechanical, electrical or civil installation
- -ductwork to the inlet of the dust collector
- -ductwork from collector to fan
- -fan and motor
- -motor starters
- -compressed air supply
- -adequate electrical power supply
- -explosion provisions, if required
- -building permits
- -freight to jobsite

PRICING:

For the supply of one (1) CARBO-Tech type 90P reverse air pulse dust collector c/w all accessories as described herein:

Prices stated are in U.S. Funds. All taxes extra. Payment terms are 20% with order, and 80% on delivery. F.O.B. Point of Manufacture.

Air Pollution Control and Liquid Filtration Products

Office (801) 566-6000 + Fax (801) 566-6177 + PO Box 1700 Sandy Utah 84091

November 28, 2007

HANDY TRUCKLINE INC. & WHOLESALE PRODUCTS

630 East King Street Meridian, ID 83642 Attn: Mr. Brett McMichael

X127

Phone (208) 886-1080

Fax (208)888-2250

Subject:

BAGGING LINE & LOADOUT

Dust Collection Emission Statement

Meridian, Idaho Facility

Brett:

Per your request, here is a typical emission statement for our dust collection equipment.

As you know, each application will have unique operating characteristics (such as dust loading, particle size distribution, moisture content, gas volume, and temperature) that are major factors in determining the efficiency of a dust collector.

IAC Systems, Inc., warrants that our equipment performance, if operated in accordance with IAC's stated operating and maintenance procedures, and within prestated system operating conditions; at a pressure differential of not less than 2.5" W.C. and not greater than 4.5" W.C., shall provide an emission efficiency rate not to exceed .02 grs per SCF. Measurement of outlet emission grains shall be an average taken at selected intervals over a 24-hour time continuum based on a gas stream particulate micron size range of 90% greater than 5 microns and 1%

ITEM NO. 1:

BIN VENT FILTER (QTY 3)

The emission level from the Model 84TB-BVI-16 Style II Bin Vent Filter should be as follows:

EXAUST AIR:

FILTER AREA:

AIR TO CLOTH RATIO:

FILTER MEDIA:

FILTER EFFICIENCY:

DUST LOADING:

1,200 CFM (Maximum Surge

182 SQ. FT.

6.6:1

(16) 16 oz. Polyester Felt Singed Elements

.02 Grains per standard cubic foot.

Moderate

CONFIDENTIAL / TRADE SECRETS: By accepting passession of this document, recipient agrees that its contents are confidential, proprietary trade secrets of Camteo Industrial Sales. No portion of this document may be reproduced, distributed, or used in any way detrimental to our interest and/or without written permission from Camtec.

CAMTEC Industrial Sales, Inc.

TAC

P.02/02

November 28, 200 Page 2 of 2

Emissions in pounds per hour:

Maximum Surge

1,200 CFM X 60 MIN. X .02 GR. PER. STD. CU. FT. 7,000 GRAINS PER POUND

= 0,205 LBS PER HOUR (per unit)

ITEM NO. 2:

BAGGING LINE DUST COLLECTOR

The emission level from the Model 120TB-BHT-196 Style III Dust Collector should be as follows:

EXAUST AIR:

18,000 CFM

FILTER AREA:

3,175 SQ. FT.

AIR TO CLOTH RATIO:

5.7:1

FILTER MEDIA:

(196) 16 oz. Polyester Felt Singed Elements

FILTER EFFICIENCY:

.02 Grains per standard cubic foot.

DUST LOADING:

Moderate

Emissions in pounds per hour:

Maximum Surge

18,000 CFM X 60 MIN. X .02 GR. PER. STD. CU. FT. 7,000 GRAINS PER POUND

=3.085 LBS PER HOUR (per unit)

Let me know if you have any questions or need further assistance in any way. You have my assurance of prompt attention to your needs.

We appreciate the opportunity to be of service to you and your continued interest in our equipment and services.

Sincerely.

Doug Campbell

Factory Material Handling Specialist

DKC

CONFIDENTIAL / TRADE SECRETS: By accepting possession of this document, recipient agrees that its contents are confidential, proprietary trade secrets of Camleo Industrial Sales. No portion of this document may be reproduced, distributed, or used in any way detrimental to our interest and/or without written permission from Camleo.

NORTH-MONSEN COMPANY

SALES ENGINEERS

P.O. BOX 174, 252 ORCHARD PLACE • SALT LAKE CITY, UTAH 84110 • 801-322-1343 • FAX 801-322-1516

April 18, 2008

Tetra Tech EM Inc 639 Isbell Road Suite 390 Reno NV 89509

Attn: Sandra L Carroll, PhD

Subject: Handy Truck Line - Meridian Terminal

Dear Sandra:

This is to confirm our discussions regarding the baghouse designs at Handy Truck Lines.

Model 64S-10-20 "C" Style houses 64 each 4.625" dia x 124" long 16oz polyester filter bags. The maximum airflow of this unit using 6:1 air-to-cloth ratio is 4523 CFM. Using a 7:1 ratio would be 5277 CFM. We would be efficient at either rate. MikroPul will guarantee PM10 at 0.02 grains per dry standard cubic foot.

Model BV-30 "B" Style housed 9 each 4.625" dia x 100" long 16oz polyester filter bags. The maximum airflow of this unit at 6:1 air-to-cloth filter ratio is 508 CFM. MikroPul guarantees PM10 at 0.02 grains per dry standard cubic foot.

Both units operate at 99.9% efficiency if equipment is well maintained and operating procedures are followed.

Sincerely yours,

NORTH MONSEN COMPANY

Stephen B. Coons

Mind of the section o

Stephen B. Coons

ATTACHMENT 2

CLIMATE DATA FOR BOISE, IDAHO

BOISE, IDAHO NORMALS, MEANS, AND EXTREMES

LATITUDE: 43ø 34' N LONGITUDE: 116ø 13' W ELEVATION: FT. GRND 2838 BARO 2875 TIME ZONE: MOUNTAIN WBAN: 24131

	(a)	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	YEAR
TEMPERATURE (Deg. F)	Ħ						H				=			
Normals] [
-Daily Maximum		36.4	44.2	52.9	61.4	71.0	80.9	90.2	88.1	77.0	64.6	48.7	37.7	62.8
-Daily Minimum		21.6	27.5	31.9	36.7	43.9	52.1	57.7	56.8	48.2	39.0	31.1	22.5	39.1
-Monthly	1 1	29.0	35.9	42,4	49.1	57.5	66.5	74.0	72.5	62.6	51.8	39.9	30.1	50.9
Extremes	İΙ										1 1			
-Record Highest	56	63	71	81	92	98	109	111	110	102	94	74	65	111
-Year	1 1	1953	1992	1978	1987	1986	1940	1960	1961	1945	1992	1988	1964	JUL 1960
-Record Lowest	56	-17	-15	6	19	22	31	35	34	23	11	-3	-25	-25
-Year	Ш	1950	1989	1971	1968	1982	1995	1986	1992	1970	1971	1985	1990	DEC 1990
NORMAL DEGREE DAYS	П													
Heating (base 65 Deg. F)		1116	815	701	477	242	75	6	20	160	414	753	1092	5861
Cooling (base 65 Deg. F)	Ш	0	0	0	0	9	120	285	252	88	0	0	0	754
% OF POSSIBLE SUNSHINE	53	40	51	62	68	71	76	87	85	82	69	43	38	64
MEAN SKY COVER(tenths)	П													
Sunrise - Sunset	56	7.8	7.3	6.9	6.5	5.9	4.8	2.8	3.2	3.6	5.1	7.0	7.5	5.7
MEAN NUMBER OF DAYS:		1 1			1 1								1	
Sunrise to Sunset]			1 1			1						1
-Clear	56	4.4	4.6	6.1	6.5	8.5	11.5	20.3	18.6	17.0	12.0	6.0	4.9	120.3
-Partly Cloudy	56	4.9	6.4	7.4	8.7	9.8	10.0	7.4	8.0	7.0	8.4	6.2	5.6	89.7
-Cloudy	56	21.6	17.4	17.6	14.8	12.5	8.4	3.3	4.4	6.1	10.6	17.8	20.5	155.1
Precipitation								١						000
.01 inches or more	56	11.8	10.1	9.7	8.3	7.9	6.0	2.4	2.6	3.6	5.9	10.3	11.3	89.9
Snow, Ice Pellets, Hail			١., ١	امدا		أيما	ا مما		ا مم ا	امما	ا ۱		2.0	7.6
1.0 inches or more	56	2.3	1.4	0.5	0.2	0.*	0.0	0.0	0.0 2.4	0.0	0.1 0.6	1.0 0.3	2.2 0.1	7.6 14.8
Thunderstorms	56	0.*	0.3	0.6	0.9	2.8	2.8	2.5	2.4	1.5	0.6	0.3	0.1	14.6
Heavy Fog Visibility	اريما	6.0	3.2	0.7	0.3	0.2	0.1	0.0	0.*	0.1	0.5	3.0	5.9	20.1
1/4 mile or less	56	0.0	3.2	0.7	0.3	0.2	0.1	0.0	υ.	0.1	0.5] 3.0	3.9	20.1
Temperature Deg. F								l					1	
-Maximum	56	0.0	0.0	0.0	0.1	1.3	5.4	18.4	15.4	3.4	0.1	0.0	0.0	44.0
90 Deg. F and above	56		2.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.1	6.8	21.2
32 Deg. F and below -Minimum	الحوال	10.2	2.6	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0		"."	
32 Deg. F and below	56	26.2	20.7	17.5	8.1	1.7	0.*	0.0	0.0	0.5	5.7	17.9	25.5	123.9
0 Deg. F and below	56		0.4	0.0	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	1.0	3.3
AV. STATION PRES. (mb)	<u> </u>			914.4	1	913.4	<u> </u>	914.4	914.4	915.8	917.7	918.4	920.0	916.2
TATION (MB)	뜸		٣			 	i	H			i			
RELATIVE HUMIDITY (%)				ll				_,			(7		01	69
Hour 04	56	81	80	74	70	70	67	54	52 33	59 39	67 47	78 65	81 74	52
Hour 10 (Local Time)	56	74	68	55	47	45	41	33	33	³⁹	H 47	63	II /4	³²

Hour 16 Hour 22	56 56		60 77	44 68	36 61	34 59	30 52	22 39	23 40	29 49	39 60	60 75	71 81	43 62
PRECIPITATION (in.) Water Equivalent														
-Normal -Maximum Monthly	5.0		1.07		1.24	1.08	0.81	0.35	0.43	0.80	0.75	1.48	1.36	
-Year	30	3.87		3.46 1989		1000	3.41	1.62	2.37	2.93	2.25	3.36	4.23	4.23
-Minimum Monthly	56	0.12	0.19		0.09	T	0.01	0.00	1908 T	1390	0.00	0.14		DEC 1983 0.00
-Year		1949	1964							1987	1988	1976	1976	OCT 1988
-Maximum in 24 hrs	56	1.48				2.05	2.24	0.94	1.61	1.74	0.76	0.88	1.16	2.24
-Year Snow, Ice Pellets, Hail		1953	1951	1981	1969	1990	1958	1960	1979	1976	1947	1971	1955	JUN 1958
-Maximum Monthly	56	21.4	25.2	11.9	8.0	4.0	$\mid_{\mathrm{T}}\mid$	Т	Т	0.0	2.7	18.6	26.2	26.2
-Year			1949				1995				1971			DEC 1983
-Maximum in 24 hrs	56		13.0	6.4	7.2	4.0	Т	Т	T	0.0	1.7	6.5	6.7	13.0
-Year	Ш	1950	1949	1952	1969	1964	1995	1995	1989		1971	1964	1983.	FEB 1949
WIND														
Mean Speed (mph)	56	8.0	8.9	9.9	9.9	9.4	9.0	8.4	8.2	8.2	8.3	8.4	8.1	8.7
Prevailing Direction through 1964		SE	SE	SE	SE	NW	NIX	NW	NW	SE	SE	SE		
Fastest Mile		J.	J.	315	315	14 **	INW	INW	14 44	SE	SE	SE	SE	SE
-Direction(!!)	54	SE	w	w	w	w	sw	w	SE	SE	SE	NW	NW	w
-Speed(mph)	54	50	56	52	50	50	50	61	56	50	56	57	56	61
-Year Peak Gust		1941	1954	1957	1942	1954	1948	1944	1963	1960	1950	1953	1950	JUL 1944
-Direction(!!)	12	N	w	NW	w	NW	NW	s	\mid $_{ m w}\mid$	sw	NW	sw	23	s
-Speed(mph)	12	59	45	53	58	49	54	71	54	49	47	54	47	71
-Date	Ш	1986	1989	1994	1986	1992	1987	1987	1984	1995	1995	1		JUL 1987

⁽a) - Length of Record in Years, although individual months may be missing. 0.* or * - The value is between 0.0 and 0.05.

Normals - Based on the 1961 - 1990 record period.

Extremes - Dates are the most recent occurrence.

Wind Dir.- Numerals show tens of degrees clockwise from true north. "00" indicates calm.

Resultant Directions are given to whole degrees.

ATTACHMENT 3

NEW BUILDING SITE PLAN

SEE PAPER APPLICATION FOR SITE PLAN